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In the human etythrocyte, adenosine and other nucleosides are transported by facilitated diffusion via a single 
type of nitrobenzylthioinosine (NBMPR)-sensitive transporter. Erythrocytes contribute substantially to the up- 
take, metabolism, and release of adenosine metabolites in the circulation and thus, modulation of transporter 
activity could indirectly mediate responses to adenosine or its metabolites. We show here that supplementation 
of the human diet with oleic acid-rich oil or with fish oil containing high levels of docosahexaenoic acid (DHA) 
and eicosapentaenoic acid (EPA), results in decreases in nucleoside uptake across the erythrocyte plasma 
membrane. Oil feeding resulted in decreases in transport rates (pmolll0’ cellslsec) for adenosine (I .6S + 0.04 
to 1.27 5 0.02), thymidine (11.4 ? 0.3 to 9.4 4 O.l), and uridine (8.3 + 0.26 to 7.02 f  0.09) on day 0 and 
day 42, respectively. Although changes in fat0 acid composition were documented in the fish oil supplemented 
group, over the 6 week treatment period, changes in the oleic acid-rich oil supplemented group were not 
statistically significant. We suggest that fatty acid changes in membrane phospholipids may be responsible for 
the observed decreases in the rates of nucleoside transport in fish oil-fed subjects but that oleic acid supple- 
mentation may alter nucleoside uptake by another mechanism. Thus, in addition to having direct effects on 
platelet and neutrophil activity, oils or foods rich in oleic acid andlor omega-3 fatty acids may have indirect 
effects on the erythrocyte that potentiate the activity of adenosine on platelets and the vascular endothel- 
ium. (J. Nutr. Biochem. 6:43w, 1995.) 
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Introduction 

Although de novo synthesis of nucleosides is common in 
most tissues, nucleosides are provided via salvage pathways 
in several cell types (red blood cells, brain cells, and bone 
marrow) where de novo synthesis of purines is deficient.’ 
Nucleosides, p articularly adenosine, act as neuromodula- 
tors in brain. ATP and adenosine hyperpolarize the pre- 
synaptic cell, inhibit neuronal firing, and inhibit transmitter 
release from cholinergic and adrenergic central neurons. 3 
Very low levels of adenosine (< 1 PM) or increased con- 
centrations of ADP lead to platelet aggregation, while in- 
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creased levels of adenosine (2- to 3-fold) result in signifi- 
cant inhibition of platelet aggregation.4*5 Adenosine, prob- 
ably through its action on A, and A, adenosine receptors, 
has critical effects on the cardiovascular system.6’7 Even 
small changes in endogenous levels of adenosine can lead to 
dramatic changes in cardiovascular tone and cerebral blood 
flow* (high levels lead to vasodilation) with little or no 
effect on blood flow in skeletal muscle or in adipose tissue. 
Tissue levels of adenosine are in large part determined by 
intracellular and extracellular enzymatic degradation of 
adenosine nucleosides, by intracellular degradation of S-ad- 
enosylhomocysteine to adenosine and homocysteine, and 
by nucleoside transporter activity. 1,4 Studies utilizing nu- 
cleoside transporter inhibitors including dipyridamole, di- 
lazep, and nitrobenzylthioinosine have confirmed the piv- 
otal role adenosine transport plays in the antiplatelet and 
vasodilatory actions of these drugs.5*9-” Also, defects in 
nucleoside transport have been identified in diabetic ani- 
mals and humans at risk of developing type I diabetes. ‘L’~ 
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The dominant route for adenosine elimination is cellular 
uptake and degradation.4,6,‘4Z’5 Since most nucleosides are 
hydrophillic and diffuse through the plasma membrane 
slowly, their uptake by cells depends on the presence of 
specialized transport proteins in the plasma membrane. 
Most cell types possess high-capacity nonconcentrative 
(equilibrative) nucleoside transport systems with broad per- 
meant specificity and a few specialized cell types (e.g., 
intestinal epithelia, neurons and peritoneal macrophages) 
also possess Naf -dependent concentrative systems.‘“21 
Human erythrocytes possess a single type of nucleoside 
transporter which is sensitive (Ki - 1 nM) to the inhibitor 
nitrobenzylthioinosine (NBMPR).22 

Epidemiologic studies have shown that populations 
whose diets are rich in omega-3 fatty acids (from fish and 
marine mammals) or vegetable oils rich in monounsaturated 
fatty acids (such as oleic acid as found in olive oil) have 
lower incidence of cardiovascular disease. 23-27 Intervention 
studies have concluded that supplementation with eicosa- 
pentaenoic acid (EPA) and docosahexaenoic acid (DHA) 
may delay the onset and progression of advanced athero- 
sclerotic disease. 28 On the other hand, as Homstra29 has 
outlined, few intervention studies have compared fish oils 
with other dietary oils. Several studies have suggested that 
growth factor activity, transport of nutrients, or production 
of biological effector molecules can be modified by cultur- 
ing cells or sup lementing diets with polyunsaturated fatty 
acids (PUFAs) . P 8.3s35 Significant modification of the fatty 
acid composition of plasma membranes can be achieved 
through dietary intervention in whole animals36.37 and even 
modest changes in membrane fatty acid composition (prin- 
cipally replacement of omega-6 fatty acids with omega-3 
fatty acids) leads to altered membrane fluidity.28 Studies 
focusing on the red cell in particular have concluded that 
maximum incorporation of DHA and EPA can occur within 
6 weeks of feeding supplements.38 

Since adenosine and its analogs play such important roles 
in the cardiovascular system and because erythrocyte trans- 
port and subsequent metabolism is a critical modulator of 
local levels of adenosine, we questioned whether the car- 
diovascular benefits of diets rich in oleic acid and long 
chain omega-3 fatty acids might not be partially mediated 
through changes in adenosine metabolism. Specifically we 
questioned whether dietary supplementation with fish or 
oleic acid-rich oils could alter the nucleoside uptake in the 
human erythrocyte and thus potentially alter adenosine me- 
diated responses. Results of another component of this 
study have been reported elsewhere.39 

Methods and materials 

Subjects 

Twenty healthy male volunteers (3 smokers) who had abstained 
from medication and maintained usual dietary habits for at least 2 
weeks prior to the study’s commencement were entered into the 
trial. We considered these individuals “free living normal sub- 
jects” and did not monitor their daily dietary intake except to 
ensure that they took the supplement and abstained from medica- 
tion throughout the study period. Approval for the trial was 
granted by the Human Ethics Committee of the University of 
Guelph and the subjects were requested to sign informed consent 

forms. Subjects were randomly assigned into an oleic acihrich oil 
or fish oil supplemented group. The supplements (provided by 
Ross Laboratories a division of Abbott Laboratories, Columbus, 
OH USA) were nutritionally complete (including protein [9.9 g], 
carbohydrate [ 19.7 g], vitamins, and minerals; patent pending) 
liquid formulations (250 ml each) containing 13.8 g of either oleic 
acid-rich oil (a mixture of safflower oil with a high oleic acid 
content and soy oils) or fish oil (sardine oil) providing a total 
energy intake of 995 kJ. Each serving containing fish oil provided 
3.3 g of EPA (20:5n-3) and 1.2 g of DHA (22:6n-3), while each 
oleic acid-rich oil serving provided 6.3 g of oleic acid (18: In-9). 
The fatty acid compositions of the supplements are given in Table 
I, Compositions were determined by Lipid Analytical Laborato- 
ries (University of Guelph Research Park, Guelph, Ontario, Can- 
ada) using procedures similar to those described by Holub and 
Skeaff ( 1987)44 with the modification that gas-liquid chromatog- 
raphy was used to separate methylated fatty acids. Formulations 
were taken each day at lunch time and subjects were requested to 
maintain their usual dietary habits for the entire experimental pe- 
riod (42 days). Subject characteristics are given in Table 2. None 
of these characteristics changed statistically over the experimental 
period. Some individuals were not analyzed on both days 0 and 
day 42 because of illness, medication use, or difficulty with sam- 
ple preparation. Only individuals for which both day 0 and day 42 
values were available were included in the various analyses. 

Transport assay 

Blood (280-300 ml) was obtained by anticubital venepuncture into 
siliconized evacuated bottles containing acid-citrate-dextrose as an 
anticoagulant4’ at day 0 (pretreatment) and day 42 (post- 
treatment). Platelets were removed by the method of Mustard et 
a1.4’ and the red cell pellet (98% red ceils) was washed four times 
at 22°C in 3 mM K,HPO,, 1.8 mM CaCl,, 1 r&l MgCl,, 144 mM 
NaCl, 20 mM Tris, pH 7.4, 10 mM glucose (transport buffer). 
Suspensions were counted in an electronic Coulter Counter (model 
ZM) and incubated with or without 1 PM NBMPR in transport 
buffer at a final cell concentration of 0.5 to 1.0 X 10’ cells/ml. 
Transport of adenosine (1 FM), thymidine (10 FM), and uridine 

Table 1 Fatty acid compositions of the oil formulas 

Oleic acid 
rich oil Fish oil 

Fatty acids (mol% total mol% total 

14:o 0.2 6.1 
16:0 6.1 10.2 
16.ln-7 0.1 10.0 
18.0 3.0 1.2 
18.ln-9 66.3 8.4 
18.1 iso 0.0 2.7 
18:2n-6 21.1 3.3 
18:3n-3 1.4 1.2 
18:4n-3 0.0 4.5 
2O:i is0 0.4 1 .o 
20:4n-6 0.0 1 .o 
20:4n-3 0.0 1.0 
20:5n-3 0.0 32.4 
22:5n-3 00 22 
22:6n-3 0.0 12.0 

Total saturates 10.5 18.8 
Total MUFA 67.0 23.3 
Total n-6 PUFA 21.2 4.8 
Total n-3 PUFA 1.4 53.2 
Ratio n-6/n-3 15.5 0.1 
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Table 2 Subject characteristics* 

Supplement 
Weight Age Height 

n Smokers (kg) (years) (cm) 

Fish oil-fed 10 2 83 2 4 27 * 1 18222 
Oleic acid-rich 

oil-fed 10 1 85 ” 3 26 ” 1 181 ?2 

*Subject characteristics did not change over the B-week study pe- 
riod. 

(10 pM) were measured essentially as described by Jarvis et al.42 
except that uptake was terminated by addition of a 2-fold excess 
volume of cold dilazep (200 p.M, a gift from Hoffman La-Roche, 
Switzerland), and cells were subsequently pelleted through oil. 
Uptake was initiated by adding 100 pL of cells (with or without 
NBMPR) to ‘H-permeant (all radionucleotides from Dupont, Can- 
ada), and uptake was measured over intervals of 0 to 5 set (3 to 4 
tubes/condition) at which point cold dilazep stopper was added, 
and cells were rapidly pelleted through oil. Permeant solution was 
aspirated, and the oil layer was washed twice in water. Finally the 
oil layer was removed and the cell pellet was solubilized in 300 pL 
of 5% Triton X-100 followed by decolorization with 50 uL of 50% 
peroxide and liquid scintillation counting in 5 mL of Ecolite (Bax- 
ter, Canada). Initial transport rates were estimated by calculating 
the slopes at 1 set using computer-generated best fit curves (using 
the second-order polynomial rate equation and Cricket-graph pro- 
gram). 

Fatty acid analysis 

Total lipid was extracted from approximately 1 mL of washed red 
cells (1 .O X 10s cells) in Na+ buffer by the method of Bligh and 
Dyer.43 The phospholipid fraction was separated from other lipids 
by thin layer chromatography on silica 60 plates (Merck, Ger- 
many) in a solvent of heptane/isopropyl ether/acetic acid (60:40: 
3). The origin containing phospholipids was scraped after visual- 
ization with 0.1% aminonaptholsulfonic acid, and fatty acids were 
methylated after adding 17:0 (3 kg) as an internal standard. Meth- 
ylated fatty acids were analyzed by gas phase chromatography as 
described.44 

Statistics 

Data were analyzed by r-test for correlated samples using the gen- 
eral linear modeling procedure (SASPC V6.04, SAS, Cary, NC). 
Differences were considered significant at P < 0.05. 

Results 

Transport of nucleosides in erythrocytes 

Six weeks of supplementation was chosen since this was the 
period of time required to achieve maximal incorporation of 
EPA and DHA into red cell membranes.34 The transport of 
three nucleosides, thymidine, uridine, and adenosine, was 
examined in freshly prepared erythrocytes from subjects on 
day 0 and again on day 42. Uptake was determined over a 
time course of 0 to 5 set, and the initial rates of uptake 
(from second-order polynomial rate equations) were deter- 
mined for each subject. Decreases in the NBMPR-sensitive 
transport rates were observed, regardless of whether sub- 
jects were supplemented with oleic acid-rich oil or fish oil 
(containing predominantly EPA and DHA). Statistical com- 

parison of data from each treatment group demonstrated that 
there were no differences between fish oil and oleic acid- 
rich oil-fed subjects at either time point in the study. There- 
fore, data were pooled for further analysis, and the mean 
transport rates were determined at day 0 and day 42. Trans- 
port rates decreased by 20% for thymidine, 15% for uridine, 
and 25% for adenosine over the 6-week feeding trial period 
(Table 3). 

We also examined the possibility that passive transport 
across the red cell membrane was modulated by lipid sup- 
plementation. Table 4 shows the rates of passive uptake for 
adenosine, thymidine, and uridine on day 0 and following 6 
weeks of supplementation with the fish and oleic acid-rich 
oils. Again no differences were found between the treat- 
ment groups and data were pooled for analysis. Rates of 
uptake were low for all nucleosides and not different after 
oil supplementation. This suggested that the passive move- 
ment of nucleosides across the red cell membrane was in- 
sensitive to changes in dietary lipid composition. 

Fatty acid composition of vegetable andfish oil 
fed subjects 

The fatty acid composition of total phospholipids on day 0 
and day 42 for vegetable and fish oil-fed subjects is shown 
in Table 5. There were no changes (either by r-test or paired 
r-test, P < 0.05) in the fatty acid profile of oleic acid-rich 
oil-fed subjects when either individual fatty acids were con- 
sidered or classes of fatty acids were pooled (i.e., n-6 or 
n-3). Small differences may have been obscured by the 
substantial variation in the major fatty acids between sub- 
jects at day 0 and at day 42 and by the small number of 
paired scores (n = 7). For fish oil supplemented subjects, 
changes in fatty acid composition as a result of feeding 
were more dramatic. A significant (25%) drop in arachi- 
donic acid, 20:4n-6, and both its precursor, dihomo-y- 
linolenic acid (20:3n-6) and elongation/desaturation prod- 
uct, 22:5n-6, was observed following fish oil feeding. 
There was a 5.6 mol% decrease in total n-6 fatty acids and 
a concomitant 4.0 mol% increase n-3 fatty acids. The major 
fatty acids that contributed to the n-3 increase were 20:5n-3 
(eicosapentaenoic acid, EPA) or 22:5n-3 (docosapentaenoic 
acid, DPA) and 22:6n-3 (docosahexaenoic acid, DHA). The 

Table 3 Rates of nucleoside transport in erythrocytes on day 0 and 
day 42 

Transport rate 
(pmol/lO’ cells/set) 

Nucleoside Day 0 Day 42 

Thymidine (10 FM) 11.4 2 0.3 9.4 2 0.1’ 
Uridine (10 ~.LM) 8.30 k 0.26 7.02 ‘- 0.09* 
Adenosine (1 PM) 1.65 k 0.04 1.27 2 0.02’ 

Initial rates of uptake were determined for each sample on day 0 
and then again 42 days after the oil feeding was begun. Averages 
for all individuals before and after treatment were compared by 
t-test for correlated samples. Differences were considered signifi- 
cant at P < 0.05 and are shown by *. Transport rates (pmol/lO’ 
cells/set) are shown % standard error of the mean (n = 14). 
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Table 4 Passive uptake of nucleosides in erythrocytes on day 0 
and day 42 

Since fish oil supplementation has been shown to alter 
red cell membrane fluidity47-49 one might expect the pas- 
sive diffusion of nucleosides to be affected by fish and/or 
oleic acid-rich oil feeding. Because red cells possess only 
one nucleoside transporter, the facilitated NBMPR- 
sensitive type, uptake in the presence of 1 p,M NBMPR is 
an index of passive diffusion rates. Our results demonstrate 
that no change in passive diffusion occurred in either treat- 
ment group. This argues that the changes in red cell per- 
meability are selective for protein-mediated transport pro- 
cesses. 

Transport rate 
(pmol/lO’ cells/set) 

Day 0 Day 42 

Thymidine (10 JLM) 0.033 + 0.001 0.034 + 0.004 
Uridine (10 PM) 0.025 2 0.006 0.037 + 0.006 
Adenosine (1 ~.LM) 0.019 * 0.003 0.021 2 0.002 

Initial rates of uptake were determined in the presence of 1 ~.LM 
NBMPR for each sample on day 0 and then again 42 days after the 
oil feeding was begun. Averages for all individuals before and after 
treatment were compared by t-test for correlated samples. Differ- 
ences were not considered significant (P > 0.05). Transport rates 
(pmol/lO’ cells/set) are shown ? standard error of the mean (n = 
14). 

net increase in n-3 fatty acids and decrease in n-6 fatty acids 
resulted in a 2-fold decrease in the n-6/n-3 ratio. 

Although changes in fatty acid composition were not 
statistically significant for oleic acid-fed subjects, when 
rates of transport of adenosine were correlated with absolute 
levels of individual fatty acids, in both treatment groups 
(fish and oleic acid-rich oil), at either day 0 or 42, a sig- 
nificant inverse correlation was found between the absolute 
level of EPA in phospholipids and the rate of adenosine 
transport (r = 0.38, n = 28, P < 0.05). The correlation 
coefficients for thymidine and uridine transport rates and 
EPA content were -0.21 and -0.24, respectively (NS, n 
= 28, P > 0.05). 

Discussion 

We have shown that supplementation of the diets of human 
male subjects with oils rich in either oleic acid or omega-3 
fatty acids (EPA and DHA) decreases nucleoside transport 
rates in the erythrocyte. We initially proposed that the 
changes in nucleoside transport rates were likely due to 
changes in membrane fatty acid composition. Our in vitro 
studies in L1210 leukemia cells supported this view since 
both DHA and EPA supplementation (as purified fatty acids 
bound to BSA) leads to substantial changes in the fatty acid 
composition of membrane phospholipids and this correlated 
with changes in adenosine transport rates45 and changes in 
the toxicity of nucleoside drugs.46 In the feeding trial we 
report here, substantial changes in total fatty acid compo- 
sition occurred in fish oil-fed subjects and could be respon- 
sible for the changes in nucleoside uptake rates we have 
observed in these individuals. Activity of the transporter 
appears to be depressed for all substrates tested: adenosine, 
thymidine, and uridine. Uridine is not readily phosphory- 
lated by erythrocytes and thus uptake is likely to represent 
transport specifically. However, adenosine is readily me- 
tabolized by erythrocytes so some of the decreased uptake 
could be due to altered metabolism. Even if this were true, 
the net result of changes in transport and/or the activity of 
metabolic enzymes inside the cell would result in a de- 
creased rate of adenosine metabolite production by the red 
blood cell. 

Trends toward similar (but less substantive) changes in 
fatty acid profiles were seen in oleic acid-rich oil- 
supplemented subjects; however, none of these were sig- 
nificant at P < 0.05 (for e.g., day 0 vs. day 42 for EPA, P 
= 0.08). Because the red cell is so long lived (120 days) 
one possible explanation could have been that the 6-week 
feeding period was too short to produce substantial changes 
in lipid composition in oleic acid-rich oil-fed subjects. This 
seems an unlikely explanation since in a parallel study Tur- 
ini and coworkers39 found that the fatty acid composition in 
platelets, which have a much shorter life span, was also not 
altered in the oleic acid-rich oil-fed group but was signifi- 
cantly altered in the fish oil-fed group. However, like our 
results with red cells, platelets from both treatments showed 
decreased aggregation in response to collagen. Thus, in a 
different cell population from the same feeding trial, a 
change in the functional activity of the cell was demon- 
strated without a change in total phospholipid fatty acid 
composition or in specific classes of fatty acids. One pos- 
sibility is that oleic acid-rich oil feeding alters fatty acid 
composition of a specific phospholipid subclass, another 
lipid class, or modulates another critical lipid, such as cho- 
lesterol content of the erythrocyte membrane. Turini et a1.39 
specifically looked at different phospholipid classes for 
changes in fatty acid composition and did not note differ- 
ences in platelets isolated on day 0 and day 42 from subjects 
on the oleic acid-rich supplement. It is, of course, possible 
that changes in specific phospholipid classes did occur in 
the erythrocyte following oleic acid-rich oil feeding and 
that these changes contributed to the changes in nucleoside 
uptake we observed. Changes in cholesterol content could 
potentially modulate transporter activity but since platelet 
plasma cholesterol was unaltered in both treatment groups3’ 
a change in red cell membrane cholesterol content would 
not be expected. Another suggestion is that oleic acid may 
covalently modify membrane or cellular proteins. Both 
EPA and arachidonic acid have been found covalently at- 
tached to platelet proteins and it has been proposed that 
these modifications regulate protein function/activity.50 It is 
conceivable that oleic acid could act similarly although this 
has yet to be demonstrated. 

An interesting finding was that when adenosine uptake 
rates were plotted as a function of phospholipid EPA con- 
tent (mol%) a significant inverse correlation was found re- 
gardless of time (baseline or 6-weeks post-treatment) or 
treatment group (fish or oleic acid-rich oil). This suggests 
that the phospholipid EPA content may be a regulator of 
nucleoside uptake. In vitro studies utilizing purified EPA at 
graded concentrations could allow this potential relationship 
to be better studied. 
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Table 5 Erythrocyte phospholipid fatty acid composition 

Oleic acid-rich oil (n = 7) Fish oil (n = 8) 

Day 0 Day42 Day0 Day42 

15:o 0.68 k 0.07 0.61 + 0.06 0.68 * 0.07 0.72 + 0.18 
16:0 21.5 k 0.4 22 7 + 1.5 20 5 k 0.4 21.4 2 0.4 
16:l 0.3 + 0.2 0.2 2 0.1 0.5 2 0.3 11206 
18:0 5.2 t 2.1 5.2 k 2.1 6 8 ? 2.0 7 3 2 2.3 
18:l 15.9 T 2 5 12 8 k 0.8 14.2 2 1.3 14 1 * 0.9 
18:2n-6 11.6 2 1.3 11.8 ? 1.3 11.3 " 1.2 10.9 2 1.6 
18:3n-6 2.5 2 1 5 48? 1.3 3.8 2 1.7 3.2 k 1.0 
18:3n-3 0.4 2 0.1 0.26 2 0.06 0.23 t 0.06 0.17 " 0.04 
18:4n-3 0.08 + 0.04 0 10 ? 0.04 0.12 + 0.05 0.13 5 0.07 
20:o 0.45 5 0.04 0.52 2 0.04 0.45 * 0.05 0.49 + 0.06 
2O:l 0.4 + 0.1 0.40 k 0.05 0.33 2 0.07 0.36 + 0.04 
20:2n-6 040 2 0.08 0.25 + 0.03t 0.41 2 0.16 0.46 2 0.26 
20:3n-6 1.1 5 0.1 11 kO.1 1.2 " 0 1 0.75 5 0.10" 
20:4n-6 9.5 2 1.8 90209 11.0?09 8.3 k 1.1' 
20:3n-3 0.2 2 0.1 0.26 -t 0.07 0.22 + 0.07 0.26 2 0.08 
20.4n-3 1.0 2 1.0 0 2 2 0.2 0.19 + 0.16 0.11 2 0.06 
20:5n-3 0.5 5 0.2 1.4 2 0.5* 0.43 t 0.08 2.4 T 0.5' 
22:o 1.8 + 0.3 19203 1.8 + 0.4 2.0 2 0.1 
22:l 0.21 2 0.04 0.22 k 0 05 0.40 2 0.06 0.26 + 0.06 
22:2n-6 0.07 k 0.04 0.23 + 0.095 0.25 5 0.18 0.10 5 0.05 
22:4n-6 3.0 2 0.3 2.5 + 0 4 2.8 2 0.6 3.1 t 1.2 
22:5n-6 05? 0.1 0.6 + 0 1 0.68 2 0.09 0.44 -t 0.10' 
22:5n-3 1.2 2 0.2 1.7 ? 0.3 2.0 k 0.2 3.1 " 0.4* 
22:6n-3 2 4 2 0.4 3.0 2 0.5 3.2 + 1.3 4.4 2 0.4' 
24:0 5.1 k 0.4 5.9 2 0 7 4.9 + 1.3 5.0 k 1.0 
24:l 5 7 2 0.6 5.6 2 0.6 5.3 t 1.2 5.6 f 1.2 

saturates 34 8 + 3.0 368 -c 2.8 35.1 k 2.5 369Tl1.9 
MUFAs 22.5 + 2.6 19.2 k 1.0 20 7 '- 0.5 21.4 2 0.7 
n-6 PUFAs 28.6 + 2 8 30.3 2 2.7 31 4 k 2.4 27 2 k 3.2* 
n-3 PUFAs 58+10 69 k 1.0 64 ? 0.6 10.6 2 1.0' 
n-6/n-3 ratio 4.9 2 0.6 4.4 i- 0 8 4 9 IL 0.8 2.6 2 0.7' 

Values given are for mol% of total fatty acrds in the purified phospholipids 
*Values on day 42 were statistically different from baseline values on day 1 by paired r-test, P < 0.05. 
Symbols in column two indicate differences from day 0: tP = 0.10; $P = 0.08; §P = 0.13. Unidentified fatty acids accounted for8.3, 6.8, 6.4, 
and 3.9 mol%. for columns 2 to 5, respectively 

In conclusion, our results demonstrate that both fish oil 
and oleic acid-rich vegetable oil feeding have the potential 
to modify erythrocyte membrane transporter activity. The 
precise mechanisms by which the individual omega-3 and 
monounsaturated fatty acids mediate these changes remain 
to be elucidated. The decreased rates of nucleoside uptake 
reported in this study could have important implications. 
Since the erythrocyte likely represents the major reservoir 
and metabolic compartment, for adenosine released into the 
blood by the liver, other blood cells and vascular endo- 
thelial cells, changes in transporter activity could have 
significant effects on vascular tone and platelet reactivity.5’ 
Following adenosine release, a decrease in the uptake of 
adenosine by the erythrocyte would allow adenosine con- 
centrations to remain higher for a longer period of time and 
thereby promote vasodilation and inhibit platelet aggrega- 
tion. Decreased rates of uptake would also delay the release 
of adenosine metabolites by the erythrocytes. Thus, we can 
add the modulation of adenosine metabolism to the multiple 
physiologic responses already described for oleic acid and 
fish oil-rich diets. The clinical value of such a finding re- 
mains to be determined because the effects of fatty acids on 
other critical cells and tissues needs to be assessed. The 

possibility that supplements such as those described in this 
study modulate nucleoside transport, adenosine receptor 
function, or 5’-nucleotidase activity, all of which contribute 
to the adenosine response, needs to be examined in other 
cell types or tissues involved in the cardiovascular response. 
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